# Who Has It? The Epidemiology of NTM



### Jennifer Adjemian, PhD

Deputy Chief, Epidemiology Unit Commander, US Public Health Service National Institute of Allergy and Infectious Diseases National Institutes of Health

### **Presentation Outline**

- I. Background on the epidemiology of NTM
- II. Recent findings from epidemiologic studies on pulmonary NTM in the United States
- III. Summary and future research needs

### NTM and Chronic Lung Disease

- Environmental bacteria with >180 species identified
  - Geographic variation in species distribution
  - Ubiquitous in soil and water sources for many exposures
- Can cause pulmonary disease in susceptible persons
  - Severe and chronic infection in affected individuals







#### **NTM Disease: Host versus Environment**

### **Environment**

Host

- Individual exposures
  - Local soil
  - Local water sources/distribution
- Environmental conditions
  - Climate
  - Elevation
  - Mycobacterial species present

- Behavioral factors
  - Smoking
  - Activities (gardening, swimming)
- Comorbidities/genetic risk factors
  - Pulmonary defects (CF, COPD)
  - Connective tissue defects
  - Other (race/ethnicity as proxy?)





NTM Lung Disease

### **Epidemiology of NTM Lung Disease**

- Only reportable in 11 states and not a nationally notifiable disease to CDC, so other data sources needed
  - Local studies (surveillance, site studies)
  - Large national datasets (lab/claims-based, patient registries)
    - Each targets different questions based on strengths/limitations
- ATS/IDSA-defined PNTM disease requires strict criteria
  - Presents challenges in estimating actual prevalence due to differences in access and use of medical services needed
    - Varies across populations by socioeconomic status

# First US Prevalence Estimates for Pulmonary NTM (PNTM) in Medicare Data

- Increasing national prevalence by 8% per year
- Significant geographic differences



### PNTM Period Prevalence by Sex and Race/Ethnicity, US Medicare Beneficiaries Aged >65 years



#### Spatial Clusters of Nontuberculous Mycobacterial Lung Disease in the United States

Jennifer Adjemian<sup>1,2</sup>, Kenneth N. Olivier<sup>2</sup>, Amy E. Seitz<sup>1,2</sup>, Joseph O. Falkinham III<sup>3</sup>, Steven M. Holland<sup>2</sup>, and D. Rebecca Prevots<sup>1,2</sup>

<sup>1</sup>Epidemiology Unit and <sup>2</sup>Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland; and <sup>3</sup>Virginia Polytechnic Institute and State University, Blacksburg, Virginia



High risk counties: greater surface water (OR 4.6), evapotranspiration (4.0), Cu (1.2) & Na (1.9) and lower manganese (0.7)

Adjenian et al. AJRCCM . 2012

## Precise Epidemiology of NTM in a High-Risk State using Kaiser Permanente Data

NTM prevalence doubled over time but not for all species



#### Period Prevalence of PNTM and TB by Age Group



### Prevalence by Race/Ethnicity for NTM and TB



#### Period Prevalence by Race/Ethnicity and Age Group for PNTM



### Risk Factors for NTM and TB in a High-Risk State

|                           | NTM |           | ТВ  |          |
|---------------------------|-----|-----------|-----|----------|
| Variable                  | aOR | 95% CI    | aOR | 95% CI   |
| Years in KPH              |     |           |     |          |
| 1 year                    | Ref |           | Ref |          |
| 2 – 4 years               | 2.6 | 1.4-4.7*  | 1.7 | 0.5-5.7  |
| ≥ 5 years                 | 6.4 | 3.6-11.2* | 2.3 | 0.8-6.9  |
| <b>Comorbid Condition</b> |     |           |     |          |
| Bronchiectasis            | 8.3 | 6.5-10.7* | 0.4 | 0.09-2.2 |
| COPD                      | 1.8 | 1.4-2.2*  | 0.4 | 0.2-1.1  |

### **Adjusted Risk Associated with NTM by Species**

|                           | M. abscessus |           | MAC |           |
|---------------------------|--------------|-----------|-----|-----------|
| Variable                  | aOR          | 95% CI    | aOR | 95% CI    |
| Racial/Ethnic Group       |              |           |     |           |
| White                     | 0.7          | 0.4-1.1   | 1.0 | 0.7-1.2   |
| NHPI                      | 0.1          | 0.01-1.4  | 0.4 | 0.2-0.9*  |
| Black                     | 1.1          | 0.7-16.4  | 1.0 | 0.2-4.8   |
| Asian                     | 2.5          | 1.7-3.9*  | 1.4 | 1.1-1.8*  |
| Filipino                  | 2.0          | 1.2-3.3*  | 1.5 | 1.1-2.1*  |
| Japanese                  | 2.0          | 1.2-3.2*  | 1.0 | 0.7-1.4   |
| Chinese                   | 1.9          | 0.9-3.9   | 1.5 | 0.95-2.3  |
| Korean                    | 2.0          | 0.6-7.0   | 1.4 | 0.6-3.2   |
| Vietnamese                | 5.0          | 1.0-24.6* | 3.7 | 1.3-10.6* |
| Years in KPH              |              |           |     |           |
| 1 year                    | Ref          |           | Ref |           |
| 2 – 4 years               | 1.1          | 0.4-2.9   | 2.7 | 1.1-6.3*  |
| ≥ 5 years                 | 2.3          | 0.96-5.4  | 7.7 | 3.5-16.8* |
| <b>Comorbid Condition</b> |              |           |     |           |
| Bronchiectasis            | 12.0         | 7.6-18.8* | 7.0 | 5.2-9.2*  |
| COPD                      | 1.3          | 0.8-2.0   | 1.9 | 1.5-2.5*  |

### PNTM Period Prevalence by Zip Code and Island







#### NTM Cases per 100,000 Persons





### PNTM Period Prevalence by Race/Ethnicity in High Prevalence Zip Codes in Oahu



- Socioeconomic: Greater % of high-income homes (each 10%: aOR=2.0, p<0.0001)</li>
- Environmental: Greater % of water coverage (each 10%: aOR=1.2, p<0.0001) and larger annual temperature range (each degree: aOR=1.1, p<0.0001)</li>

# Epidemiology of NTM in Persons with Cystic Fibrosis (CF) using Patient Registry Data

- CF Foundation (CFF) began collecting detailed NTM data starting in 2010
- Conducted several epidemiologic NTM analyses
  - Annual prevalence 90 times > than general population
  - Increase of 5.3% per year
  - Species-specific epidemiologic differences in risk and outcome



### Prevalence of PNTM isolated from persons with CF in the United States, 2010-2014



### Percentage of Positive Mycobacterial Cultures Attributed to *Mycobacterium abscessus* among U.S. Cystic Fibrosis Patients, 2010-2011



### Period Prevalence of PNTM by Age Group and by Age of Initial CF Diagnosis, 2010-2014



- Early diagnosis=study participants diagnosed ≤3 years old
- Mid-range diagnosis=study participants diagnosed >3 and <30 years old</li>
- Late diagnosis=study participants diagnosed ≥30 years

### Prevalence of NTM in Persons with CF by Age Group and Years of Residence in Hawaii among US Military Families



Years of Residence in Hawaii

### Mean Distance to Water by NTM Positivity in Persons with CF in Central Florida, 2012-2015



Bouso et al. Household Proximity to Water and Nontuberculous Mycobacteria in Children With Cystic Fibrosis; Pediatric Pulmonology 52:324–330 (2017)

### **Summary of Host Risk Factors**

- Host risks include structural, immunologic, and genetic factors
  - Structural defects like COPD identified in 18-38% of patients with NTM
  - Lung cancer also associated with increased prevalence
  - Disorders of mucocilliary clearance like CF and PCD
  - Low ciliary beat frequency in study of patients with no other conditions
  - Correlations in family studies with low BMI, thoracic skeletal abnormalities, mitral valve prolapse, and connective tissue disorders
  - Older age increases risk and differences by race/ethnicity
- Certain treatment for these lung disorders can modify risk
  - TNF-α blockers increase risk by inhibiting immune response to NTM
  - In CF, chronic macrolide use appears to be protective

### **Summary of Environmental Risk Factors**

- Geographic variation in prevalence and species distribution
  - High-risk areas include parts of CA, FL, HI, LA, NY, PA, OK and WI
    - Greater amounts of moisture in air and more surface water present
    - Soil factors like higher copper and sodium and lower manganese levels
  - Hawaii consistently identified as highest risk state in the nation
    - Increased duration of residence seems to increase risk
    - Unique conditions like humic soil is associated with high numbers of NTM
  - "High-risk" states often also associated with more M. abscessus
    - In US hospital patients MAC ranged from 61% in West South Central states (AR, LA, OK, TX) to 91% in East South Central states (AL, KY, MS, TN)
    - In CF, MAC also ranged greatly by state, from 29% in LA to 100% in NE

### Summary of Household Risk Factors

- Household water source and water pipe biofilms may represent a potentially important source of NTM exposure
  - Studies show genetic matches between variants in samples from patient households and clinical isolates from same patients
  - Watershed affiliated with patient's area of residence may alter risk
- Soil and dust in homes also identified as potential sources
  - Aerosols from potting soils in patient homes with pathogenic species
  - Study in Florida found dose-response relationship with greater amounts of soil exposure and positive *M. avium* skin test reaction

### **Summary of Behavioral Risk Factors**

- Difficult to assess due to 1) rarity of disease, 2) ubiquity of organism, and 3) high frequency of common exposures
- Some case-control studies identified a few potential factors
  - Indoor swimming pool use (in CF)
  - Tap water appearing rusty or unclear (in CF)
  - Spraying plants with spray bottles (in general population in Oregon)
  - Higher levels of soil exposure (in bronchiectasis patients in Japan)

### **Summary and Future Directions**

- Recent epidemiologic studies highlight:
  - Increasing prevalence over time
  - Greater burden on older adults, persons of Asian ancestry, and those with certain structural and/or genetic pulmonary diseases
  - Wide geographic variations in NTM risk and species
- Future epidemiologic studies needed on:
  - Species-specific environmental reservoirs
  - Genetic modifications of risk
  - Risks for initial infection and reinfection
  - Mechanisms for dose-response relationship with greater exposure and risk of NTM

### Acknowledgements

- National Institute of Allergy and Infectious Diseases (NIAID)
- National Heart, Lung and Blood Institute (NHLBI)
- Walter Reed National Military Medical Center
- Tripler Army Medical Center
- University of Colorado, Denver
- National Jewish Health
- Cystic Fibrosis Foundation
- Kaiser Permanente
- Premier Perspectives
- US Centers for Medicare and Medicaid Services

### Thank you!

#### **Burden of NTM in the United States**

Results showed higher financial and case burden than TB

| State          | Total 2010 Cases | Rank of State Population (Largest to Smallest) | Cases per<br>100,000<br>Population | Annual Cost<br>(2014 Dollars) |
|----------------|------------------|------------------------------------------------|------------------------------------|-------------------------------|
| California     | 12,544           | 1                                              | 44.5                               | \$110,690,528                 |
| Florida        | 11,580           | 4                                              | 53.6                               | \$98,527,193                  |
| Texas          | 6,792            | 2                                              | 39.4                               | \$54,983,825                  |
| New York       | 5,055            | 3                                              | 29.1                               | \$48,600,779                  |
| Pennsylvania   | 3,969            | 6                                              | 30.5                               | \$41,312,486                  |
| North Carolina | 2,890            | 10                                             | 35.3                               | \$26,071,179                  |
| Arizona        | 2,859            | 16                                             | 48.9                               | \$24,664,441                  |
| Illinois       | 2,643            | 5                                              | 24.8                               | \$26,361,795                  |
| Georgia        | 2,365            | 9                                              | 34.5                               | \$20,847,084                  |
| Hawaii         | 2,131            | 40                                             | 164.6                              | \$21,800,504                  |
| U.S. total     | 86,244           | n.a.                                           | 27.9                               | \$815,098,690                 |

Strollo, Adjemian, Adjemian, Prevots. Annals ATS. 2015.

#### NTM Screening Rates and Prevalence in CF Patients by State



### Period Prevalence of PNTM by Age Group, Gender and BMI in Persons with CF, 2010-2014



# NTM Treatment Guideline Adherence using Clinician Surveys and Patient EMR Data

- Surveyed clinicians to evaluate guideline adherence and identified poor compliance and often harmful practices
- Results led to global campaign to improve treatment practices through seminars, trainings, patient groups and websites

| Treatment Regimen                                     | Regimens for MAC n (% of All Regimens) |
|-------------------------------------------------------|----------------------------------------|
| Met ATS/IDSA guidelines for MAC <sup>*</sup>          | 77 (13)                                |
| Did not meet ATS/IDSA guidelines for MAC <sup>*</sup> | 502 (87)                               |
| Regimens that may increase macrolide resistance       | 174 (30)                               |
| Regiments of unknown clinical significance            | 3 (0.5)                                |
| Regimens that do not include macrolides               | 325 (56)                               |

### Identify New Potential Clinical Trial Endpoints using Patient EMR Data

- Challenging to get new drugs approved due to lack of robust "hard outcomes" and length of observation time for NTM
- Used patient EMR data to identify earlier measures of treatment success for clinical trials
  - Semi-quantitative culture results
  - Quality of life measures

