Nontuberculous Mycobacterial Infections Who, How, When and Why to Treat

Charles L. Daley, MD
National Jewish Health
University of Colorado
Icahn School of Medicine, Mt. Sinai

Conflict of Interest Disclosures

- Research Grant:
 - Insmed
- Advisory Board:
 - Insmed
 - Johnson and Johnson
 - Spero Pharmaceuticals
 - Horizon Pharmaceuticals
 - Paratek

Nontuberculous Mycobacterial Infections Who, How, When and Why to Treat

WHO to Treat? ATS/IDSA Diagnostic Criteria For NTM Lung Disease

Clinical

Cough Fatigue Weight Loss

Radiographs

Bacteriology

≥ 2 positive sputum cultures *or* 1 positive bronch culture

Progression of NTM Pulmonary Disease in Those Who Meet ATS/IDSA Diagnostic Criteria

Hwang JA, et al. Eur Respir J 2017;49:1600537

Progression of NTM Pulmonary Disease in Those Who Meet ATS/IDSA Diagnostic Criteria

Hwang JA, et al. Eur Respir J 2017;49:1600537 Byoung, et al. Resp Med 2019;150:45-50

Progression of NTM Pulmonary Disease in Those Who Meet ATS/IDSA Diagnostic Criteria

Resp Med 2019;150:45-50

Eur Respir J 2017;49:1600537

Resp Med 2019;151:1-7.

Risk Factors Associated with Progression

Host/Demographic Factors

- Male gender
- Older age
- Presence of comorbidities
- Low body mass index

Laboratory Factors

- Elevated inflammatory indices (ESR, CRP)
- Anemia
- Hypoalbuminemia

Radiographic Factors

- Fibrocavitary
- Extent of disease

Microbial Factors

- Bacterial load
- Species

Hwang JA, et al. Eur Respir J 2017;49:1600537 Byoung, et al. Resp Med 2019;150:45-50 Moon SM, et al. Resp Med 2019;151:1-7.

Characteristics

Age

Symptoms

Radiograph

Progression

Co-morbidities

Drug intolerances

Organism

Characteristics	Definitely Treat		
Age	Young		
Symptoms	Symptomatic		
Radiograph	Cavitary, extensive		
Progression	Progressing		
Co-morbidities	None		
Drug intolerances	None		
Organism	Pathogenic		

Characteristics	Definitely Treat	Possibly Treat	Definitely Not Treat
Age	Young		Elderly
Symptoms	Symptomatic		Asymptomatic
Radiograph	Cavitary, extensive		Non-cavitary, mild
Progression	Progressing		Stable
Co-morbidities	None		Many
Drug intolerances	None		Many
Organism	Pathogenic		Less pathogenic

Characteristics	Definitely Treat	Possibly Treat	Definitely Not Treat
Age	Young		Elderly
Symptoms	Symptomatic	?	Asymptomatic
Radiograph	Cavitary, extensive		Non-cavitary, mild
Progression	Progressing		Stable
Co-morbidities	None	?	Many
Drug intolerances	None		Many
Organism	Pathogenic		Less pathogenic

WHO to Treat? Treatment Initiation Algorithm

Kwon, YS, et al. Tuberc Resp Dis 2019;82:15-26

Nontuberculous Mycobacterial Infections Who, How, When and Why to Treat

HOW to TreatTreatment of MAC

- 65 year old Caucasian woman treated for Mycobacterium avium complex on two previous occasions with macrolide, rifampin, and ethambutol
- Now with AFB smear positive sputum specimen and culture positive for M. intracellulare

Treatment Outcomes of Macrolide Susceptible *M. avium* complex

Systematic Review and Meta-analysis

- 42 studies (2,748 patients)
 - 18 retrospective, 18 prospective, 6 randomized
- Treatment success
 - sputum culture conversions posttreatment microbiologic recurrence
- Treatment success
 - Overall for macrolide containing regimen 52.8%
 - 3-drug ATS regimen 61.4%
 - Above taken for at least a year 65.7%

Treatment Failures Strengthen the Treatment Regimen

CONVERT STUDY

Phase 3 Randomized, Controlled Trial of Amikacin Liposome Inhalation Suspension (ALIS) + GBT vs GBT alone in treatment refractory MAC lung disease

CONVERT STUDY

Proportion of Patients With Negative Sputum Cultures for NTM

CONVERT STUDY

Treatment Emergent Adverse Events (TEAE)

Adverse Event	GBT + ALIS	GBT				
Respiratory-related AEs						
Dysphonia	45.7%	0.9%				
Cough	37.2%	15.2%				
Dyspnea	21.5%	8.9%)				
Hemoptysis	17.5%	13.4%				
Oropharyngeal pain	10.8%	1.8%				
Audiological AEs						
Tinnitus	7.6%	0.9%				
Dizziness	6.3%	2.7%				
Hearing loss	4.5%	6.3%				
Serious adverse events	20.2%	17.9%				
Discontinuation of ALIS	17.5%	_				

HOW to Treat Treatment of *M. abscessus*

• 68 year old woman with chronic cough and fatigue

Macrolide Resistance: Implications for Treatment

	romycin ility results				
Days 3-5	Day 14	Genetics	Subspecies	Susceptibility Phenotype	Use Macrolide
Susceptible	Susceptible	Dysfunctional erm(41) gene	M. massiliense	Susceptible	Yes

Macrolide Resistance: Implications for Treatment

Clarithromycin susceptibility results					
Days 3-5	Day 14	Genetics	Subspecies	Susceptibility Phenotype	Use Macrolide
Susceptible	Susceptible	Dysfunctional erm(41) gene	M. massiliense	Susceptible	Yes
Susceptible	Resistant	Functional erm(41) gene	M. abscessus* M. bolletii	Inducible resistance	Possibly but don't count as active

^{* 15%} have nonfunctional *erm*(41) gene due T to C substitution at position 28

Macrolide Resistance: Implications for Treatment

Clarithromycin susceptibility results					
Days 3-5	Day 14	Genetics	Subspecies	Susceptibility Phenotype	Use Macrolide
Susceptible	Susceptible	Dysfunctional erm(41) gene	M. massiliense	Susceptible	Yes
Susceptible	Resistant	Functional erm(41) gene	M. abscessus* M. bolletii	Inducible resistance	Possibly but don't count as active
Resistant	Resistant	23S rRNA point mutation	Any	Constitutive resistance	Only for anti-inflam purposes

^{* 10-15%} have nonfunctional erm(41) gene due T to C substitution at position 28

Treatment Outcomes for M. abscessus vs. M. massiliense

Study	Population	Treatment	N	Sputum conversion	Failure to convert	Relapse
Koh,	Non Cystic	M. abscessus	24	25%	58%	17%
2011	Fibrosis	M. massiliense	33	88%	3%	9%
Lyu,	Non Cystic	M. abscessus	26	42%	27%	31%
2014	Fibrosis	M. massiliense	22	96%	0%	5%
Roux, 2015	Cystic Fibrosis	M. abscessus M. massiliense	12 7	25% 86%	- -	-
Park,	Non Cystic	M. abscessus	19	26%	74%	55%
2017	Fibrosis	M. massiliense	17	82%	18%	0%

Koh WJ, et al. Am J Respir Crit Care Med 2011;183:405-10 Choi H, et al. Antimicrob Agents Chemother 2016 epub Park J, et al. CID 2017;64:301-8

Treatment Outcomes with *M. abscessus*Systematic Review and Meta-analysis

- 14 studies identified (8 provided individual patient data, 303 patients)
- Treatment success
 - culture conversion for ≥ 12 months while on treatment or sustained culture conversion without relapse until the end of treatment
- Treatment success
 - Overall 45.6%
 - M. abscessus subspecies abscessus 33.0%
 - M. abscessus subspecies massiliense 56.7%
- Imipenem, azithromycin, or parenteral amikacin associated with success in M. abscessus subspecies abscessus

Nontuberculous Mycobacterial Infections Who, How, When and Why to Treat

