Evaluating and Treating Bronchiectasis Patients

Gregory Tino, M.D.
Chief, Department of Medicine
Penn Presbyterian Medical Center

Associate Professor of Medicine Perelman School of Medicine at the University of Pennsylvania Philadelphia, PA

Disclosures

- **✓** Research grant support:
 - Bronchiectasis Research Registry/COPD Foundation
- **✓** Advisory Board:
 - Bayer
 - Grifols
 - Aradigm
 - Cipla

Bronchiectasis

- ✓ Characterized <u>pathologically</u> by airway inflammation and permanent bronchial dilatation, and <u>clinically</u> by productive cough
- **✓** Heterogeneous entity with multiple etiologies
- **✓** Prevalence is increasing
- **✓** Clinical course punctuated by exacerbations
- ✓ Associated with notable QOL impairment, and significant morbidity and mortality

- Seitz et al. *Chest* 2012; 142
- Chalmers et al. *AJRCCM* 2013; 189.

EVALUATION

Get the Diagnosis Right

1) Establish presence of bronchiectasis

- 2) Identify underlying cause
 - Successful in a majority of cases
 - May impact treatment in as many as 40% of patients

Bronchiectasis: Diagnosis

Clinical Profiles

- **✓** Persistent productive cough
 - Daily sputum production
 - Symptoms for many years
 - Pseudomonas aeruginosa by sputum culture
- **✓** Recurrent respiratory tract infections
- ✓ Non-smokers thought to have COPD with recurrent exacerbations
- **✓** Unexplained hemoptysis

HRCT scan

Radiological Distribution

Focal Disease

- **✓** Postinfectious
 - Bacterial
 - Viral
 - Mycobacterial (TB, NTM)
- **✓** Airway obstruction
 - Foreign body
 - Bronchial stricture (i.e., RML syndrome)
 - Endobronchial mass

Focal disease is rarely due to genetic causes

[•]Barker AF. N Engl J Med. 2002;346.

[•]Mysliwiec V, Pina JS. Postgrad Med. 1999; 106.

[•]Pasteur MC, et al. AJRCCM. 2000; 162.

Radiological Distribution

Focal Disease

✓ Postinfectious

- Bacterial
- Viral
- Mycobacterial (TB, NTM)

✓ Airway obstruction

- Foreign body
- Bronchial stricture (i.e., RML syndrome)
- Endobronchial mass

•Barker AF. N Engl J Med. 2002;346.

Multifocal Disease

✓ Postinfectious

- Measles, pertussis
- Mycobacterial (TB, NTM)

✓ Congenital syndromes

- Cystic fibrosis
- Primary ciliary dyskinesia

✓ Immunodeficiency states

- Immunoglobulin deficiency/CVID
- HIV/AIDS

✓ Immune-mediated diseases

- ABPA
- Rheumatoid arthritis
- Sjogren's syndrome
- Inflammatory bowel disease

✓ GERD/Aspiration

[•]Mysliwiec V, Pina JS. Postgrad Med. 1999; 106.

[•]Pasteur MC, et al. AJRCCM. 2000; 162.

MAC Infection

Cystic Fibrosis

ABPA

Mounier-Kuhn Syndrome

Source: Michael A. Grippi, Jack A. Elias, Jay A. Fishman, Robert M. Kotloff, Allan I. Pack, Robert M. Senior, Mark D. Siegel: Fishman's Pulmonary Diseases and Disorders: www.accessmedicine.com Copyright © McGraw-Hill Education. All rights reserved.

Aspiration

Approach to Diagnosis

- **✓** Age of the patient
- ✓ Presence of extrapulmonary signs of symptoms

- **✓** Presence of associated conditions
 - ABPA, RA, COPD
- **✓** Microbiology

Work-up: ERS Guidelines

✓ Minimum bundle

- CBC with differential count
- Serum immunoglobulins (A, G, M)
- ABPA testing: serum IgE level, specific IgE and IgG, Aspergillus skin test
- Routine sputum culture

Other testing as dictated by clinical data

- ✓ <u>CF testing (both)</u> sweat chloride tests and CFTR genetic mutation analysis):
 - All children and all adults up to the age of 40
- **✓** Consider CF testing in others with:
 - Upper lobe bronchiectasis
 - Persistent isolation of S. aureus in sputum
 - Features of malabsorption
 - Male primary infertility
 - Recurrent pancreatitis

✓ PCD testing:

- Neonatal respiratory distress
- Chronic rhinosinusitis or otitis media
- Infertility or dextrocardia
- **✓** Work-up for <u>gastric aspiration</u> should be considered in selected patients
- **✓** Bronchoscopy: not routinely warranted

TREATMENT

Goals of Treatment

- ✓ Control symptoms: cough, sputum characteristics
- **✓** Reduce exacerbations
- **✓** Improve quality of life
- **✓** Maintain lung function
- **✓** Reduce mortality
- **✓** Reduce cost of care

Treatment Targets

- **✓** Impaired sputum clearance
- **✓** Acute and chronic lung infection

- **✓** Airway inflammation
- **✓** Underlying condition

Adult Patients With Bronchiectasis

A First Look at the US Bronchiectasis Research Registry

Timothy R. Aksamit, MD; Anne E. O'Donnell, MD; Alan Barker, MD; Kenneth N. Olivier, MD; Kevin L. Winthrop, MD;
M. Leigh Anne Daniels, MD, MPH; Margaret Johnson, MD; Edward Eden, MD; David Griffith, MD; Michael Knowles, MD;
Mark Metersky, MD; Matthias Salathe, MD; Byron Thomashow, MD; Gregory Tino, MD; Gerard Turino, MD;
Betsy Carretta, MPH; and Charles L. Daley, MD; for the Bronchiectasis Research Registry Consortium

Chest 2017; 151.

1826 patients with bronchiectasis enrolled between 2008 and 2014

- ✓ Airway clearance 56%
- **✓** Antibiotics only for exacerbation 41%
- ✓ Suppressive antibiotics 39%: 10% aerosol, 7% rotating oral regimen
- ✓ Inhaled bronchodilators 61%
- ✓ Inhaled steroids 39%, systemic steroids 13%

Airway Clearance Therapy

- ✓ Techniques designed to enhance mucociliary clearance
 - Widely considered a mainstay of management
 - Little data regarding efficacy

Cochrane Review 2015

- **✓** Number of modalities in use:
 - Mechanical methods
 - Pharmacologic

Airway Clearance Therapy

- **✓** Target population:
 - Symptomatic patients: cough, sputum production
 - Difficulty expectorating sputum
 - Frequent acute exacerbations

ERS Guideline. Polverino et al. *ERJ* 2017; 50 *Weak recommendation*

Recommend a modality that will maximize patient adherence

Systemic Antimicrobial Therapy for Exacerbations

Pulmonary exacerbation in adults with bronchiectasis: a consensus definition for clinical research *Eur Resp J* 2017; 49.

Adam T. Hill^{1,26}, Charles S. Haworth^{2,26}, Stefano Aliberti ¹⁰³, Alan Barker⁴, Francesco Blasi³, Wim Boersma⁵, James D. Chalmers⁶, Anthony De Soyza⁷, Katerina Dimakou⁸, J. Stuart Elborn⁹, Charles Feldman¹⁰, Patrick Flume¹¹, Pieter C. Goeminne^{12,13}, Michael R. Loebinger¹⁴, Rosario Menendez¹⁵, Lucy Morgan¹⁶, Marlene Murris¹⁷, Eva Polverino¹⁸, Alexandra Quittner¹⁹, Felix C. Ringshausen²⁰, Gregory Tino²¹, Antoni Torres¹⁸, Montserrat Vendrell²², Tobias Welte²⁰, Rob Wilson¹⁴, Conroy Wong²³, Anne O'Donnell^{24,27} and Timothy Aksamit^{25,27} for the EMBARC/BRR definitions working group

Definition of a bronchiectasis pulmonary exacerbation for clinical trials

A person with bronchiectasis with a deterioration in three or more of the following key symptoms for at least 48 h:

- 1) Cough
- 2) Sputum volume and/or consistency
- 3) Sputum purulence
- 4) Breathlessness and/or exercise tolerance
- 5) Fatigue and/or malaise
- 6) Haemoptysis

AND a clinician determines that a change in bronchiectasis treatment is required#

Sputum culture is critical

Table 1		
Bacteriology	of	bronchiectasis

	Study/Year (n)				
Organisms	Nicotra et al, ⁵ 1995 (n = 123)	Pasteur et al, ⁶ 2000 (n = 150)	King et al, ⁴ 2007 (n = 89)	Li et al, ⁷ 2005 (n = 136)	
H influenza	30	35	47	39	
P aeruginosa	31	31	12	11	
M catarrhalis	2	20	8	2	
S pneumoniae	11	13	7	22	
S aureus	7	14	4	4	
No organism	Not specified	(23)	(21)	Not specified	
Mycobacterium	17	0	2	Not specified	

US BRR:

- *P. aeruginosa -* 33%
- *S. aureus -* 11.3%

- O'Donnell. Clin Chest Med 2012.
- Metersky et al. *Ann ATS* 2018; 15.
- Aksamit et al. Chest 2017; 151.

Antimicrobial Therapy

General Principles:

- ✓ Let sputum analysis be your guide
- **✓** Adjust/narrow antibiotic if specific pathogen isolated
- **✓** Optimal duration is uncertain:
 - 14 day course
 - Longer courses as dictated by clinical response
- ✓ Pseudomonas aeruginosa and S. aureus infections can be especially challenging

Inhaled Antibiotic Therapy

Bacterial Load: Impact

- ✓ High bacterial load (CFUs) linked to:
 - Risk of future exacerbations
 - Future hospitalizations for exacerbations
 - Markers of lung inflammation

Impact of *Pseudomonas* Infection

7 × Higher Risk of Hospitalization

3 × Higher Mortality

- Chalmers, et al. *AJRCCM*. 2014; 189.
- Finch, et al. *Annals ATS*. 2015; 12.

Inhaled antibiotics have been standard of care for CF patients with *P. aeruginosa* infection

- **✓ Tobramycin:** Ramsey et al. *NEJM*, 1999; 340
- ✓ Aztreonam: McCoy et al. AJRCCM, 2008; 178

Inhaled Antibiotics

Pros:

- **✓** High concentration in the airway
- **✓** Reduced systemic absorption
- **✓** Reduced systemic toxicity

Cons:

- **✓** Airway side effects
- **✓** Possible emergence of resistance

Inhaled Antibiotics: Clinical Trials

- **✓** Tobramycin
- **✓** Gentamicin
- **✓** Aztreonam for inhalation solution
- **✓** Levofloxacin
- **✓** Colistin
- **✓** Dry powder ciprofloxacin (RESPIRE)
- ✓ Liposomal ciprofloxacin (ORBIT)

Inhaled Antibiotics: Summary

- **✓** Clear microbiologic impact
- ✓ Clinical efficacy not proven conclusively in clinical trials thus far
 - Reduction of exacerbations
 - Colistin, RESPIRE-1, ORBIT-4
 - Improved quality of life
 - Colistin: improvement in SGRQ after 26 weeks (10. 5 units)

Inhaled Antibiotics: Summary

- ✓ Adverse effects (cough, dyspnea, bronchospasm) well described
- ✓ Emergence of resistant pathogens has not been observed
- **✓** None currently approved by regulatory agencies

- **✓** Target population:
 - Chronic GNR infection
 - Frequent exacerbations: > 3/year
 - Other therapy optimized
- **✓** Daily versus on/off regimen
- ✓ Role versus chronic macrolides has not been established

Chronic Macrolide Therapy

Macrolides & Bronchiectasis

- ✓ Myriad anti-inflammatory and immunomodulatory properties
 - Inhibit mucus hypersecretion
 - Reduce IL-8 and neutrophil elastase
 - Inhibit neutrophil adhesion to epithelial cells
 - Inhibit biofilm formation
 - Inhibit production of reactive oxygen species from neutrophils
- ✓ Precedent for their use in other airways diseases: CF, DPB, post-transplant OB, COPD

EMBRACE

(Wong et al. Lancet 2012: 380)

- 141 patients
- At least 1 exacerbation in past year
- Azithromycin 500mg thrice weekly for 6 months
- Co-primary endpoints:
 - Event-based exacerbation frequency
 - FEV_1
 - SGRQ

BAT

(Altenburg et al. *JAMA* 309, 2013)

- 83 patients
- At least 3 exacerbations in past year
- Azithromycin thrice weekly for 12 months
- Primary endpoint:
 - # of infectious exacerbations

BLESS

(Serisier et al. *JAMA* 309, 2013)

- 107 patients
- At least 2 exacerbations in past year
- Erythromycin 400mg twice daily for 48 weeks
- Primary endpoint:
 - Mean rate of exacerbations/year

All three studies reported decrement in exacerbations

Macrolides & Bronchiectasis: Concerns

- **✓** Bacterial antibiotic resistance
- **✓** NTM macrolide resistance
- **✓** Cardiac risk
- **✓** Other adverse effects
 - GI tract
 - Ototoxicity

Macrolides: Target Patients

- ✓ Frequent exacerbations (> 2-3 per year)
 - No subgroup data; role in other settings?
- ✓ No significant underlying cardiac disease and normal EKG/QTc

- Avoid in patients with known or strongly suspected NTM infection.
- Duration of therapy has not been established

Long-term Antibiotic Treatment

Not Recommended

- **✓** Inhaled corticosteroids
 - Possible increased risk of NTM infection
- **✓** Chronic systemic corticosteroids
- **✓** Chronic non-macrolide systemic antibiotics
 - Kapur N, et al. *Cochrane Database Syst Rev.* 2009 Jan 21.
 - Tsang KW, et al. *Thorax*. 2005;60.
 - Andrejak et al. Thorax. 2013; 68.
 - Polverino et al . ERS Guideline. ERJ 2017; 50.
 - Wurzel et al. Cochrane Review 2011
 - TSANZ Guidelines, MJA 2015

Surgery

An option for:

- Localized disease, frequent exacerbations despite medical therapy
- As an adjunct to medical therapy for NTM infection
- Refractory, massive hemoptysis

Acceptable morbidity and mortality reported

Other Measures

- ✓ Specific therapy for underlying conditions when appropriate
- ✓ Short-course systemic steroids for some exacerbations
- **✓** Exercise /pulmonary rehabilitation
- **✓** Supplemental oxygen
- **✓** Lung transplantation

Summary

- **✓** An organized diagnostic approach is important
- ✓ Treatment options are evolving and need to be individualized; phenotyping may provide guidance
- ✓ We need more research! The sobering reality is that patients with bronchiectasis suffer significant morbidity and mortality, and yet can be offered few proven, effective therapies.

