
To determine whether plumbing could be a source 
of nontuberculous mycobacteria (NTM) infection, during 
2007–2009 I isolated NTM from samples from household 
water systems of NTM patients. Samples from 22/37 (59%) 
households and 109/394 (28%) total samples yielded 
NTM. Seventeen (46%) of the 37 households yielded >1 
Mycobacterium spp. isolate of the same species as that 
found in the patient; in 7 of those households, the patient 
isolate and 1 plumbing isolate exhibited the same repetitive 
sequence-based PCR DNA fi ngerprint. Households 
with water heater temperatures <125°C (<50°C) were 
signifi cantly more likely to harbor NTM compared with 
households with hot water temperatures >130°F (>55°C) 
(p = 0.0107). Although households with water from public 
or private water systems serving multiple households were 
more likely to have NTM (19/27, 70%) compared with 
households with a well providing water to only 1 household 
(5/12, 42%), that difference was not signifi cant (p = 0.1532).

Nontuberculous mycobacteria (NTM) are opportunistic 
pathogens found in the environment (e.g., water and 

soil) and cause life-threatening infections in humans, other 
mammals, and birds (1,2). The incidence of NTM disease 
in Canada and the United States seems to be increasing (3–
5). In Toronto, Ontario, Canada, NTM disease incidence 
rose from 1.5 to 9.0 cases per 100,000 population during 
1997–2003 (3). The most common NTM infecting 
persons in the United States are Mycobacterium avium, 
M. intracellulare, and M. avium complex (MAC) (6). 
Infections occur in immunodefi cient (e.g., HIV/AIDS) and 
immunosuppressed (e.g., cancer and transplant) patients 
and nonimmunosuppressed persons with the classic risk 

factors for mycobacteria infection, which include exposure 
to dust or smoke and underlying lung disease (6,7). Cystic 
fi brosis (8), heterozygosity for mutations in the cystic 
fi brosis transmembrane conductance regulator gene (9), 
and α-1-antitrypsin defi ciency (10) predispose persons to 
NTM disease. Elderly, slender women lacking any of the 
classic risk factors for NTM disease are also at risk for NTM 
pulmonary disease (11–13). The major manifestation of 
NTM infection in the immunocompetent host is pulmonary 
disease, whereas disseminated disease (i.e., bacteremia) is 
found in patients with AIDS and other immunosuppressed 
persons (6).

NTM, particularly M. avium and M. intracellulare, 
have been recovered from a variety of environmental niches 
with which humans come in contact, especially drinking 
water (14–19). NTM are not transient contaminants of 
drinking water distribution systems; rather, the NTM grow 
and persist in plumbing (19,20). For example, numbers 
of mycobacteria increase in pipes as the distance from 
the treatment plant increases (19). NTM cell surface 
hydrophobicity results in disinfectant resistance and a 
predilection to attach to surfaces where NTM grow and 
form biofi lms (21,22) that further increase disinfectant 
resistance (23). Because disinfectants inhibit the competing 
microfl ora, the slow-growing NTM can grow on the 
available nutrients in the absence of competition. M. avium 
can grow in drinking water at concentrations of assimilable 
organic carbon of >50 μg/L (24). Thus, there is strong 
reason to hypothesize that NTM can colonize and persist in 
household plumbing.

Sources of human infection with NTM, including 
MAC, have been found in water (18) and potting soil 
(25). Notably, M. avium was detected in water aboard the 
Russian space station Mir (26). Recently, researchers found 
that the DNA fi ngerprints of several M. avium isolates 
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recovered from the shower of an M. avium–infected patient 
were almost identical to isolates recovered from the patient, 
indicating that the household water could have been the 
source of the patient’s pulmonary disease (27). Despite 
that evidence, several publications have documented low 
frequency of recovery of MAC from household water 
samples (17,28–30). Such low recovery rates of M. avium 
and M. intracellulare could be because water samples, not 
biofi lm, were collected. As MAC preferentially attaches to 
surfaces (21–23), MAC may be at low numbers in water 
samples. Furthermore, in the studies cited above, a low 
number (<4) of samples were collected from individual 
households. Recovery of multiple NTM or MAC isolates is 
necessary because of the clonal variation of MAC (25,27). 
The pilot study described here isolated, enumerated, and 
DNA fi ngerprinted NTM from households of patients with 
NTM to test the hypothesis that household plumbing could 
be a source of their NTM infection.

Methods

Patients and NTM Isolates
NTM patients were recruited to participate in studies 

of their household water systems through the auspices of 
Nontuberculous Mycobacteria Research and Information, 
Inc. Informed consent was obtained from each participating 
patient, and the study was reviewed by the Virginia Tech 
Institutional Research Board and granted exempt status. 
NTM isolates from the patients, if possible, were obtained 
through collaborating physicians and mycobacteriology 
laboratories. In some instances multiple patient isolates of 
different species were found. A questionnaire was provided 
to each patient to obtain information about the household 
plumbing.

Household Water and Biofi lm Samples
Sterile containers and swabs were sent to each 

collaborating patient household. Directions for collection of 
hot and cold water samples (500 mL) and biofi lms/sediment 
from water taps and showerheads by using swabs were 
provided. If the patient thought that infection might have 
occurred as a result of exposure to soil, soil samples were 
collected. In some cases fi lters (fi ber, activated charcoal, 
and reverse osmosis) were collected. All samples were 
returned at ambient temperatures by express courier service 
to the Mycobacteriology Laboratory in the Department of 
Biological Sciences at Virginia Tech.

Isolation and Identifi cation of Mycobacteria
Mycobacteria in water and swab (taps and fi lters) 

samples were counted and isolated as described (27). Soil 
samples were processed as described (25). Most acid-fast 
colonies picked for identifi cation and enumeration were 

small (1-mm diameter after 14 days at 37°C), unpigmented 
to yellow, and resembled either the transparent or opaque 
types previously reported (17). Acid-fast isolates were 
identifi ed by nested PCR of the 16S rRNA gene (31) and 
PCR amplifi cation and analysis of restriction endonuclease 
digestion fragments of the heat-shock protein 65 (hsp65) 
gene (32).

Fingerprinting Patient and Environmental Isolates
In those instances in which the Mycobacterium species 

from the patient and household water system isolates were 
the same, isolates were fi ngerprinted by repetitive sequence-
based PCR (rep-PCR) (33). Matches were confi rmed by 
use of GelCompar II software (Applied Maths, Inc., Austin, 
TX, USA).

Results

Household Plumbing Samples
Samples for NTM isolation were received from 31 

collaborating patients throughout the United States and 
Canada: Arizona, California, Colorado, Connecticut, 
Florida, Georgia, Michigan, New Jersey, New York, 
Pennsylvania, Texas, Vermont, Virginia, and Wisconsin, 
USA; and Ontario, Canada. Six patients each had 2 
residences and sent samples from each residence. 

NTM Isolation
The isolates from the 31 patients with NTM infection 

included M. avium (9), M. intracellulare (6), MAC (11), 
M. abscessus (4), and M. xenopi (1). Isolates could not 
be obtained from 11 patients, thus preventing rep-PCR 
fi ngerprinting even in those instances where household 
isolates belonged to the same species. Thus, the total 
number of patient isolates available for fi ngerprinting 
was only 20. All putative Mycobacterium spp. isolates 
recovered from samples were identifi ed, and 45% of NTM-
positive households (10/22) and 1.5% of NTM-positive 
samples (6/394) yielded >1 NTM species (Table 1). The 
average number of different NTM species per household 
was 1.9 (range 1–5 NTM species/household). In those 
instances where the Mycobacterium species of the patient 
and their household plumbing isolates were the same (e.g., 
M. avium), all isolates belonging to the same species as the 
patient were subject to rep-PCR fi ngerprinting. Household 
isolates included M. avium (10), M. intracellulare (10), 
M. malmoense (5), M. szulgai (3), M. chelonae (2), M. 
gordonae (6), and 1 each of M. scrofulaceum, M. terrae, 
and M. trivale (Table 1).  Samples were coded with the fi rst 
2 or 3 letters representing each patient, a letter representing 
sample type (W, water; Sw, swab [biofi lm]; S, soil), a 
number for sample number from a household collection, 
and the fi nal number for the isolate from the sample; thus, 
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ML-W-6-2 is the second water isolate from the sixth sample 
collected from patient ML’s household. 

NTM were isolated from water, biofi lm, fi lter, or soil 
samples from 22 (59%) households sampled and from 109 
(28%) of 394 samples. There was a positive correlation 
between the number of samples collected per household 
and the number of NTM-positive samples (r = 0.4581). 
In 8 households >50% of the samples yielded NTM, and 
in 7 households no NTM were isolated. Seventeen of the 
37 household sample collections had at least 1 sample that 
yielded an NTM isolate that belonged to the same species 
as that of the patient. Among those 17 households, at least 
1 NTM isolate from 7 households exhibited the same rep-
PCR fi ngerprint as that of the patient. Specifi cally, the 
Figure illustrates matching rep-PCR band patterns of patient 
isolate ML-P-1 (lane 3) and shower water isolate ML-W-
6-2 (lane 4) from the patient’s home and patient isolate 
TC-P-1 (lane 10) and tap water isolate TC-W-2-2 (lane 12) 
from the patient’s home. Matches were confi rmed by use of 
GelCompar II software (Applied Maths, Inc.). Furthermore, 
the Figure also illustrates the relative similarity in rep-PCR 
band patterns of patients and their household isolates and 
the wide differences between isolates of different patients 
(compare lanes 3–4, lanes 7–8, and lanes 10–12). On 
the basis of diversity of band patterns and the number of 
bands (7–14 bands), the results confi rm the discriminatory 
power of rep-PCR fi ngerprinting (32). The percentage 
of fi ngerprint matches may be an underestimate because 
patient isolates could not be obtained for 11/31 patients, all 
of whom had MAC infections.

The frequency of NTM recovery from water (47/195, 
24%), biofi lm (46/165, 28%), fi lters (4/12, 33%), and soil 
samples (3/17, 18%) did not differ markedly. The highest 
numbers of NTM, as CFUs, were recovered from biofi lms 
(10,371 CFU/cm2), with lower numbers from fi lters (1,987 
CFU/cm2), soils (1,500 CFU/g), and water (157 CFU/
mL). Most biofi lm samples were collected by swabbing 
either the inside of a water tap or showerhead with a 

sterile swab that was immediately placed in 2 mL sterile 
tap water. Because the samples were shipped immediately 
after collection, there was little opportunity for the NTM 
numbers to change.

Household Plumbing Characteristics as 
Determinants of NTM Presence

Review of the responses to the NTM patient 
questionnaire led to identifi cation of 2 factors that seemed 
to infl uence NTM in household samples. Households 
with water heater temperatures <125°C (50°C) were 
more likely to yield NTM (17/20, 85%) compared with 
households in which water temperature was >130°F (55°C) 
(6/15, 40%) (Table 2). That difference was signifi cant 
(p = 0.0107; relative risk 2.125, by Fisher exact test). 
Although households with water from a public or private 
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Table 1. Characteristics of NTM isolated from samples from 
household plumbing of patients with NTM infection, 2007–2009*
Characteristic Value
No. patients 31
No. households sampled 37†

Households with NTM 22/37 (59)
Households with >1 NTM species 10/22 (45)

Total no. samples collected 394
Samples with NTM 109/394 (28)
Samples with >1 NTM species 6/394 (1.5)

Households with NTM of same species as 
patient

17/37 (46)

Household and patient NTM share same 
fingerprint

7/17 (41)

* Values are no. positive results/no. samples in category (%) except as 
indicated. NTM, nontuberculous mycobacteria. 
†Six patients had 2 residences and submitted samples from each. 

Figure. Repetitive sequence-based PCR fi ngerprint patterns of 
nontuberculous mycobacteria isolates from patients and household 
plumbing. Lane 1, 100-bp ladder; lane 2, no DNA control; lane 
3, patient Mycobacterium avium isolate ML-P-1; lane 4, patient 
ML household M. avium shower water isolate ML-W-6–2; lane 5, 
patient ML household M. avium bathtub tap water isolate ML-W-8–
3; lane 6, no sample; lane 7, patient M. avium isolate SC-P-3; lane 
8, SC patient household M. avium water isolate SC-W-1-1; lane 
9, no sample; lane 10, patient M. avium isolate TC-P-1; lane 11, 
TC household M. avium humidifi er water isolate TC-W-4–1; lane 
12, TC household M. avium bathroom tap water isolate, TC-W-2–2.
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water system were more likely to have NTM (19/27, 70%) 
compared with households with water from a well (5/12, 
42%) that difference was not signifi cant (p = 0.1532; 
relative risk 1.689 by Fisher exact test) (Table 3).

Discussion
The data document the relevance of household water 

as a source of NTM infection. Seven (41%) of the 17 
patients from whom isolates were obtained were infected 
with an NTM strain having the same DNA fi ngerprint as 
at least 1 NTM isolate from their household plumbing. 
Several characteristics of household water and plumbing 
are conducive to NTM survival and growth. Specifi cally, 
residual disinfectant selects for disinfectant-resistant NTM 
(23), pipe surfaces offer opportunities for biofi lm formation 
(21–23), and low organic matter content permits growth of 
the oligotrophic NTM (22,24).

The frequency of samples yielding NTM (28%) 
reported is almost identical to the frequency of 
Mycobacterium spp. 16S rRNA sequences in biofi lm 
(swab) samples collected from showers across the United 
States (34). In as much as that culture-independent study 
(34) did not collect samples specifi cally from households 
of NTM patients, apparently NTM are quite frequent in 
household water and plumbing across the United States 
and Canada and are not unique to household plumbing of 
NTM patients. In addition to exposure, host factors (6–10) 
are infl uential factors in the acquisition of NTM disease. 
For the study reported here, NTM patient contamination of 
samples was unlikely because the patients were either free 
of NTM in sputum or were continuing antimycobacteria 
therapy; none were persistently sputum positive. The low 
frequency of recovery of NTM by other studies (17,28–30) 

was likely because a low number of samples were collected 
from households. As shown here, only 28% of household 
samples yielded NTM, and there was a positive correlation 
between the number of samples collected and the recovery 
of NTM from household samples.

In addition to documenting the presence of NTM in 
households across the United States, the data from this 
pilot study with its relatively small sample size suggest 
that water heater temperature and water source could 
be factors infl uencing NTM presence. NTM were less 
frequently recovered from household samples whose water 
heater temperature was >130°C (>55°C). The relative risk 
of NTM presence was 2.125 for households whose water 
heater temperature was <125°C (<50°C). In fact, 6 of the 
7 households whose patient and plumbing isolates shared 
identical rep-PCR patterns had water heater temperatures 
<125°C (<50°C). That association correlates with the 
temperature sensitivity of NTM species. For example, the 
time required to kill 90% of M. avium cells is 1,000 min at 
50°C but only 54 min at 55°C; similar times were measured 
for M. intracellulare (35). High water heater temperatures 
have been associated with low numbers of Legionella spp. 
in household and other building plumbing (36–39). 

It would follow that persons infected or at risk for 
NTM disease, e.g., slender elderly persons or cystic fi brosis 
transmembrane conductance regulator gene heterozygotes 
(8–13), consider increasing water heater temperatures. 
Households whose water came from a public or private 
water system were more likely to have NTM in household 
water than those whose water source was a well (p = 0.1532, 
relative risk = 1.689). Although not signifi cant, that result 
is consistent with the fact that NTM are seldom detected 
in groundwater (40). This pilot study will be followed 
by an investigation to assess the infl uence of a variety 
of household plumbing characteristics in households of 
additional NTM patients and their neighbors.

Acknowledgments
I thank Myra D. Williams, who performed the technical 

work, and the NTM patients who participated in the study.

The study was supported by a grant from the Nontuberculous 
Mycobacteria Research and Information Foundation, Inc.

Dr Falkinham is a professor of microbiology in the 
Department of Biological Sciences at Virginia Polytechnic 
Institute and State University. His research interests include the 
epidemiology of Mycobacterium avium, metal oxidation and 
reduction in biofi lms and predatory bacteria ecology.

References

  1.  Falkinham JO III. Epidemiology of infection by nontuberculous my-
cobacteria. Clin Microbiol Rev. 1996;9:177–215.

422 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 17, No. 3, March 2011

Table 2. Influence of water heater temperature on presence of 
NTM in samples from household plumbing of patients with NTM 
infection, 2007–2009*

Characteristic
No. households

NTM positive NTM negative Total
Water heater temperature

<125°F (<50°C) 17 3 20
>130°F (>55°C) 6 9 15

Total no. households 23 12 35
*NTM, nontuberculous mycobacteria.

Table 3. Influence of water source on presence of NTM in 
samples from household plumbing of patients with NTM infection, 
2007–2009* 

Characteristic
No. households 

NTM positive NTM negative Total 
Water source 
 Public or private piped 19 8 27
 Well 5 7 12
Total no. households 24 15 39
*Two households received water from a piped system and a well. NTM, 
nontuberculous mycobacteria. 



Nontuberculous Mycobacteria from Plumbing

  2.  Falkinham JO III. Surrounded by mycobacteria: nontubercu-
lous mycobacteria in the human environment. J Appl Microbiol. 
2009;107:356–67. DOI: 10.1111/j.1365-2672.2009.04161.x

  3.  Marras TK, Chedore P, Ying AM, Jamieson F. Isolation prevalence 
of pulmonary non-tuberculous mycobacteria in Ontario, 1997–2003. 
Thorax. 2007;62:661–6. DOI: 10.1136/thx.2006.070797

  4.  Iseman MD, Marras TK. The importance of nontuberculous myco-
bacterial lung disease. Am J Respir Crit Care Med. 2008;178:999–
1000. DOI: 10.1164/rccm.200808-1258ED

  5.  Billinger ME, Olivier KN, Viboud C, Montes de Oca R, Steiner C, 
Holland SM, et al. Nontuberculous mycobacteria–associated lung 
disease in hospitalized persons, United States, 1998–2005. Emerg 
Infect Dis. 2009;15:1562–9.

  6.  Marras TK, Daley CL. Epidemiology of human pulmonary infection 
with nontuberculous mycobacteria. Clin Chest Med. 2002;23:553–
67. DOI: 10.1016/S0272-5231(02)00019-9

  7.  Wolinsky E. Nontuberculous mycobacteria and associated diseases. 
Am Rev Respir Dis. 1979;119:107–59.

  8.  Olivier KN, Weber DJ, Wallace RJ Jr, Falz AR, Lee J-H, Zhang Y, et 
al. Nontuberculous mycobacteria. I. Multicenter prevalence study in 
cystic fi brosis. Am J Respir Crit Care Med. 2003;167:828–34. DOI: 
10.1164/rccm.200207-678OC

  9.  Kim JS, Tanaka N, Newell JD, De Groote MA, Fulton K, Huitt G, et 
al. Nontuberculous mycobacterial infection. CT scan fi ndings, geno-
type, and treatment responsiveness. Chest. 2005;128:3863–9. DOI: 
10.1378/chest.128.6.3863

10.  Chan ED, Kaminska AM, Gill W, Chmura K, Feldman NE, Bai 
X, et al. Alpha-1-antitrypsin (AAT) anomalies are associated with 
lung disease due to rapidly growing mycobacteria and AAT inhibits 
Mycobacterium abscessus infection in macrophages. Scand J Infect 
Dis. 2007;39:690–6. DOI: 10.1080/00365540701225744

11.  Prince DS, Peterson DD, Steiner RM, Gottlieb JE, Scott R, Israel 
HL, et al. Infection with Mycobacterium avium complex in patients 
without predisposing conditions. N Engl J Med. 1989;321:863–8. 
DOI: 10.1056/NEJM198909283211304

12.  Reich JM, Johnson RE. Mycobacterium avium complex pulmonary 
disease. Incidence, presentation, and response to therapy in a com-
munity setting. Am Rev Respir Dis. 1991;143:1381–5.

13.  Kennedy TP, Weber DJ. Nontuberculous mycobacteria. An underap-
preciated cause of geriatric lung disease. Am J Respir Crit Care Med. 
1994;149:1654–8.

14.  Covert TC, Rodgers MR, Reyes AL, Stelma GN Jr. Occurrence of 
nontuberculous mycobacteria in environmental samples. Appl Envi-
ron Microbiol. 1999;65:2492–6.

15.  du Moulin GC, Stottmeier C, Pelletier KD, Tsang AY, Hedley-
Whyte J. Concentration of Mycobacterium avium by hospital 
host water systems. JAMA. 1988;260:1599–601. DOI: 10.1001/
jama.260.11.1599

16.  Fischeder R, Schulze-Röbbecke R, Weber A. Occurrence of my-
cobacteria in drinking water samples. Zentralbl Hyg Umweltmed. 
1991;192:154–8.

17.  Glover N, Holtzman A, Aronson T, Froman S, Berlin OGW, Domin-
guez P, et al. The isolation and identifi cation of Mycobacterium 
avium complex (MAC) recovered from Los Angeles potable water, 
a possible source of infection in AIDS patients. Int J Environ Health 
Res. 1994;4:63–72. DOI: 10.1080/09603129409356800

18.  von Reyn CF, Maslow JN, Barber TW, Falkinham JO III, Arbeit RD. 
Persistent colonisation of potable water as a source of Mycobacte-
rium avium infection in AIDS. Lancet. 1994;343:1137–41. DOI: 
10.1016/S0140-6736(94)90239-9

19.  Falkinham JO III, Norton CD, LeChevallier MW. Factors infl uenc-
ing numbers of Mycobacterium avium, Mycobacterium intracel-
lulare, and other mycobacteria in drinking water distribution sys-
tems. Appl Environ Microbiol. 2001;67:1225–31. DOI: 10.1128/
AEM.67.3.1225-1231.2001

20.  Hilborn ED, Covert TC, Yakrus MA, Harris SI, Donnelly SF, Rice 
EW, et al. Persistence of nontuberculous mycobacteria in a drink-
ing water system after addition of fi ltration treatment. Appl Environ 
Microbiol. 2006;72:5864–9. DOI: 10.1128/AEM.00759-06

21.  Torvinen E, Suomalainen S, Lehtola MJ, Miettinen IT, Zacheus O, 
Paulin L, et al. Mycobacteria in water and loose deposits of drink-
ing water distribution systems in Finland. Appl Environ Microbiol. 
2004;70:1973–81. DOI: 10.1128/AEM.70.4.1973-1981.2004

22.  Williams MM, Yakrus MA, Arduino MJ, Cooksey RC, Crane CB, 
Banerjee SN, et al. Structural analysis of biofi lm formation by rapid-
ly and slowly growing nontuberculous mycobacteria. Appl Environ 
Microbiol. 2009;75:2091–8. DOI: 10.1128/AEM.00166-09

23.  Steed KA, Falkinham JO III. Effect of growth in biofi lms on chlo-
rine susceptibility of Mycobacterium avium and Mycobacterium 
intracellulare. Appl Environ Microbiol. 2006;72:4007–11. DOI: 
10.1128/AEM.02573-05

24.  Norton CD, LeChevallier MW, Falkinham JO III. Survival of My-
cobacterium avium in a model distribution system. Water Res. 
2004;38:1457–66. DOI: 10.1016/j.watres.2003.07.008

25.  De Groote MA, Pace NR, Fulton K, Falkinham JO III. Relationships 
between Mycobacterium isolates from patients with pulmonary 
mycobacterial infection and potting soils. Appl Environ Microbiol. 
2006;72:7602–6. DOI: 10.1128/AEM.00930-06

26.  Kawamura Y, Li Y, Liu H, Huang X, Li Z, Ezaki T. Bacterial 
population in Russian space station “Mir.” Microbiol Immunol. 
2001;45:819–28.

27.  Falkinham JO III, Iseman MD, De Haas P, van Soolingen D. Myco-
bacterium avium in a shower linked to pulmonary disease. J Water 
Health. 2008;6:209–13.

28.  Yajko DM, Chin DP, Gonzalez PC, Nassos PS, Hopewell PC, Rein-
gold AL, et al. Mycobacterium avium complex in water, food, and 
soil samples collected from the environment of HIV-infected indi-
viduals. J Acquir Immune Defi c Syndr Hum Retrovirol. 1995;9:176–
82.

29.  Peters M, Müller C, Rüsch-Gerdes S, Seidel C, Göbel U, Pohle HD, 
et al. Isolation of atypical mycobacteria from tap water in hospitals 
and homes: is this a possible source of disseminated MAC infection 
in AIDS patients? J Infect. 1995;31:39–44. DOI: 10.1016/S0163-
4453(95)91333-5

30.  Montecalvo MA, Forester F, Tsang AY, du Moulin G, Wormser GP. 
Colonisation of potable water with Mycobacterium avium complex 
in homes of HIV-infected patients. Lancet. 1994;343:1639. DOI: 
10.1016/S0140-6736(94)93093-7

31.  Wilton S, Cousins D. Detection and identifi cation of multiple my-
cobacterial pathogens by DNA amplifi cation in a single tube. PCR 
Methods Appl. 1992;1:269–73.

32.  Telenti A, Marchesi F, Balz M, Bally F, Böttger EC, Bodmer T. Rap-
id identifi cation of mycobacteria to the species level by polymerase 
chain reaction and restriction enzyme analysis. J Clin Microbiol. 
1993;31:175–8.

33.  Cangelosi GA, Freeman RJ, Lewis KN, Livingston-Rosanoff D, 
Shah KS, Milan SJ, et al. Evaluation of high-throughput repetitive 
sequence-based PCR system for DNA fi ngerprinting of Mycobac-
terium tuberculosis and Mycobacterium avium complex strains. J 
Clin Microbiol. 2004;42:2685–93. DOI: 10.1128/JCM.42.6.2685-
2693.2004

34.  Feazel LM, Baumgartner LK, Peterson KL, Frank DN, Harris JK, 
Pace NR. Opportunistic pathogens enriched in showerhead bio-
fi lms. Proc Natl Acad Sci U S A. 2009;106:16393–9. DOI: 10.1073/
pnas.0908446106

35.  Schulze-Röbbecke R, Buchholtz K. Heat susceptibility of aquatic 
mycobacteria. Appl Environ Microbiol. 1992;58:1869–73.

36.  Alary M, Joly JR. Risk factors for contamination of domestic hot 
water systems by legionellae. Appl Environ Microbiol. 1991;57:
2360–7.

 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 17, No. 3, March 2011 423



RESEARCH

37.  Dewailly E, Jolly JR. Contamination of domestic water heaters with 
Legionella pneumophila: impact of water temperature on growth 
and dissemination of the bacterium. Environ Toxicol Water Qual. 
1991;6:249–57. DOI: 10.1002/tox.2530060213

38.  Straus WL, Plouffe JF, File TM Jr, Lipman HB, Hackman BH, Sal-
strom S-J, et al. Risk factors for domestic acquisition of Legion-
naires disease. Arch Intern Med. 1996;156:1685–92. DOI: 10.1001/
archinte.156.15.1685

39.  Martinelli F, Caruso A, Moschini L, Turano A, Scarcella C, Speziani 
F. A comparison of Legionella pneumophila occurrence in hot wa-
ter tanks and instantaneous devices in domestic, nosocomial, and 
community environments. Curr Microbiol. 2000;41:374–6. DOI: 
10.1007/s002840010152

40.  Martin EC, Parker BC, Falkinham JO III. Epidemiology of infection 
by nontuberculous mycobacteria. VII. Absence of mycobacteria in 
southern groundwaters. Am Rev Respir Dis. 1987;136:344–8.

Address for correspondence: Joseph O. Falkinham, III, Department of 
Biological Sciences, Virginia Polytechnic Institute and State University, 
Blacksburg, VA 24061-0406, USA; email: jofi ii@vt.edu

424 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 17, No. 3, March 2011

The opinions expressed by authors contributing to this 
journal do not necessarily refl ect the opinions of the Centers for 
Disease Control and Prevention or the institutions with which 
the authors are affi liated.


